
Laboratorio di Tecnologie
dell'Informazione

Ing. Marco Bertini
bertini@dsi.unifi.it

http://www.dsi.unifi.it/~bertini/

venerdì 18 maggio 12

mailto:bertini@dsi.unifi.it
mailto:bertini@dsi.unifi.it
http://viplab.dsi.unifi.it/~bertini
http://viplab.dsi.unifi.it/~bertini

Resource Management
Memory, smart pointers and RAII

venerdì 18 maggio 12

Resource management

• The most commonly used resource in C++
programs is memory

• there are also file handles, mutexes, database
connections, etc.

• It is important to release a resource after that
it has been used

venerdì 18 maggio 12

An example

class Vehicle { ... }; // root class of a hierarchy

Vehicle* createVehicle(); /* return a pointer to root
class but may create any other object in the hierarchy.
The caller MUST delete the returned object */

void f() {
 Vehicle* pV = createVehicle();
 //... use pV
 delete pV;
}

venerdì 18 maggio 12

An example

class Vehicle { ... }; // root class of a hierarchy

Vehicle* createVehicle(); /* return a pointer to root
class but may create any other object in the hierarchy.
The caller MUST delete the returned object */

void f() {
 Vehicle* pV = createVehicle();
 //... use pV
 delete pV;
}

If there’s a premature
return or an exception we
may never reach the
delete !

venerdì 18 maggio 12

A solution

• Put the resource returned by createVehicle
inside an object whose destructor automatically
release the resource when control leaves f().

• destructor calls are automatic

• With these objects that manage resources:

• resources are acquired and immediately turned over
to resource-managing objects (RAII)

• these objects use their destructors to ensure that
resources are released

venerdì 18 maggio 12

RAII
Resource Acquisition Is Initialiazation

venerdì 18 maggio 12

What is RAII

• This technique was invented by Stroustrup to
deal with resource deallocation in C++ and to
write exception-safe code: the only code that
can be guaranteed to be executed after an
exception is thrown are the destructors of
objects residing on the stack.

• This technique allows to release resources
before permitting exceptions to propagate (in
order to avoid resource leaks)

venerdì 18 maggio 12

http://en.wikipedia.org/wiki/Exception
http://en.wikipedia.org/wiki/Exception
http://en.wikipedia.org/wiki/Destructor
http://en.wikipedia.org/wiki/Destructor
http://en.wikipedia.org/wiki/Stack_(data_structure)
http://en.wikipedia.org/wiki/Stack_(data_structure)

What is RAII - cont.

• Resources are tied to the lifespan of suitable
objects.
They are acquired during initialization, when
there is no chance of them being used before
they are available.
They are released with the destruction of the
same objects, which is guaranteed to take
place even in case of errors.

venerdì 18 maggio 12

RAII example#include <cstdio>
#include <stdexcept> // std::runtime_error

class file {
public:
 file (const char* filename) : file_(std::fopen(filename, "w+")) {
 if (!file_) {
 throw std::runtime_error("file open failure");
 }
 }
 ~file() {
 if (std::fclose(file_)) {
 // failed to flush latest changes.
 // handle it
 }
 }
 void write (const char* str) {
 if (EOF == std::fputs(str, file_)) {
 throw std::runtime_error("file write failure");
 }
 }
private:
 std::FILE* file_;
 // prevent copying and assignment; not implemented
 file (const file &);
 file & operator= (const file &);
};

venerdì 18 maggio 12

RAII example#include <cstdio>
#include <stdexcept> // std::runtime_error

class file {
public:
 file (const char* filename) : file_(std::fopen(filename, "w+")) {
 if (!file_) {
 throw std::runtime_error("file open failure");
 }
 }
 ~file() {
 if (std::fclose(file_)) {
 // failed to flush latest changes.
 // handle it
 }
 }
 void write (const char* str) {
 if (EOF == std::fputs(str, file_)) {
 throw std::runtime_error("file write failure");
 }
 }
private:
 std::FILE* file_;
 // prevent copying and assignment; not implemented
 file (const file &);
 file & operator= (const file &);
};

void example_usage() {
 // open file (acquire resource)
 file logfile("logfile.txt");
 logfile.write("hello logfile!");
 // continue using logfile ...
 // throw exceptions or return without
 // worrying about closing the log;
 // it is closed automatically when
 // logfile goes out of scope
}

venerdì 18 maggio 12

auto_ptr

deprecate |ˈdepriˌkāt|
verb [with obj.]
1 express disapproval of: (as adj. deprecating) : he sniffed in a deprecating way.

venerdì 18 maggio 12

auto_ptr

• auto_ptr is a pointer-like object (a smart
pointer) whose destructor automatically calls
delete on what it points to

• it’s in the C++ standard library:
#include <memory>

• other smart pointers exist:
e.g. Boost or the new C++11 smart pointers

• auto_ptr has been deprecated in C++11

venerdì 18 maggio 12

auto_ptr: an example

• Reconsider the f() function using auto_ptr:

void f() {

 std::auto_ptr<Vehicle> pV(createVehicle());

 // use pV as before...

} /* the magic happens here: automatically
deletes pV via the destructor of auto_ptr,
called because it’s going out of scope */

venerdì 18 maggio 12

auto_ptr: another example

• In general here’s how to rewrite unsafe code
in safe code:

// Original code
void f() {
 T* pt(new T);
 /*...more code...*/
 delete pt;
}

//Safe code, with auto_ptr
void f() {
 auto_ptr<T> pt(new T);
 /*...more code...*/
} /* pt's destructor is called
as it goes out of scope, and
the object is deleted
automatically */

venerdì 18 maggio 12

auto_ptr characteristics

• Since auto_ptr automatically deletes what it
points to when it is destroyed, there should not
be two auto_ptr pointing to an object

• or the object may be deleted twice: it’s an
undefined behaviour, if we are lucky the program
just crashes

• To avoid this auto_ptr have a special feature:
copying them (e.g. copy constructor or assignment
operator) sets them to null and copying pointer
assumes the ownership of the object

venerdì 18 maggio 12

auto_ptr characteristics: example

// pV1 points to the created object
std::auto_ptr<Vehicle> pV1(createVehicle());

std::auto_ptr<Vehicle> pV2(pV1);
/* now pV2 points to the object and pV1 is
null ! */

pV1 = pV2;
/* now pV1 points to the object and pV2 is
null ! */

venerdì 18 maggio 12

auto_ptr characteristics - cont.

• If the target auto_ptr holds some object, it is
freed

• This copy behaviour means that you can’t
create an STL container of auto_ptr !

• Remind: STL containers want objects with
normal copy behaviours

• Modern compilers (with modern STL) issue
compile errors

venerdì 18 maggio 12

auto_ptr characteristics - cont.

• If you do not want to loose ownership use the
const auto_ptr idiom:
const auto_ptr<T> pt1(new T);
 // making pt1 const guarantees that pt1 can
 // never be copied to another auto_ptr, and
 // so is guaranteed to never lose ownership

 auto_ptr<T> pt2(pt1); // illegal
 auto_ptr<T> pt3;
 pt3 = pt1; // illegal
 pt1.release(); // illegal
 pt1.reset(new T); // illegal

• it just allows dereferencing

venerdì 18 maggio 12

auto_ptr characteristics - cont.

• auto_ptr use delete in its destructor so do
NOT use it with dynamically allocated arrays:

std::auto_ptr<std::string>
aPS(new std::string[10]);

• use a vector instead of an array

venerdì 18 maggio 12

auto_ptr methods

• use get() to get a pointer to the object
managed by auto_ptr, or get 0 if it’s pointing to
nothing

• use release() to set the auto_ptr internal
pointer to null pointer (which indicates it
points to no object) without destructing the
object currently pointed by the auto_ptr.

• use reset() to deallocate the object pointed
and set a new value (it’s like creating a new
auto_ptr)

venerdì 18 maggio 12

auto_ptr methods

• use get() to get a pointer to the object
managed by auto_ptr, or get 0 if it’s pointing to
nothing

• use release() to set the auto_ptr internal
pointer to null pointer (which indicates it
points to no object) without destructing the
object currently pointed by the auto_ptr.

• use reset() to deallocate the object pointed
and set a new value (it’s like creating a new
auto_ptr)

auto_ptr<int> p (new int);
*p.get() = 100;
cout << "p points to " << *p.get() << endl;

venerdì 18 maggio 12

auto_ptr methods

• use get() to get a pointer to the object
managed by auto_ptr, or get 0 if it’s pointing to
nothing

• use release() to set the auto_ptr internal
pointer to null pointer (which indicates it
points to no object) without destructing the
object currently pointed by the auto_ptr.

• use reset() to deallocate the object pointed
and set a new value (it’s like creating a new
auto_ptr)

auto_ptr<int> p (new int);
*p.get() = 100;
cout << "p points to " << *p.get() << endl;

auto_ptr<int> auto_pointer (new int);
int * manual_pointer;
*auto_pointer=10;
manual_pointer = auto_pointer.release();
cout << "manual_pointer points to " <<
*manual_pointer << "\n";
// (auto_pointer is now null-pointer auto_ptr)
delete manual_pointer;

venerdì 18 maggio 12

auto_ptr methods

• use get() to get a pointer to the object
managed by auto_ptr, or get 0 if it’s pointing to
nothing

• use release() to set the auto_ptr internal
pointer to null pointer (which indicates it
points to no object) without destructing the
object currently pointed by the auto_ptr.

• use reset() to deallocate the object pointed
and set a new value (it’s like creating a new
auto_ptr)

auto_ptr<int> p (new int);
*p.get() = 100;
cout << "p points to " << *p.get() << endl;

auto_ptr<int> auto_pointer (new int);
int * manual_pointer;
*auto_pointer=10;
manual_pointer = auto_pointer.release();
cout << "manual_pointer points to " <<
*manual_pointer << "\n";
// (auto_pointer is now null-pointer auto_ptr)
delete manual_pointer;

auto_ptr<int> p;
p.reset (new int);
*p=5;
cout << *p << endl;

p.reset (new int);
*p=10;
cout << *p << endl;

venerdì 18 maggio 12

auto_ptr methods - cont.

• operator*() and operator->() have been
overloaded and return the element pointed by
the auto_ptr object in order to access one of
its members.

auto_ptr<Car> c(new Car);
c->startEngine();
(*c).getOwner();

venerdì 18 maggio 12

Scope guard

• Sometime we want to release resources if an
exception is thrown, but we do NOT want to
release them if no exception is thrown. The
“Scope guard” is a variation of RAII

• Foo* createAndInit() {
 Foo* f = new Foo;
 auto_ptr<Foo> p(f);
 init(f); // may throw
 // exception
 p.release();
 return f;
}

• int run () {
 try {
 Foo *d = createAndInit();
 return 0;
 } catch (...) {
 return 1;
 }
}

venerdì 18 maggio 12

Scope guard

• Sometime we want to release resources if an
exception is thrown, but we do NOT want to
release them if no exception is thrown. The
“Scope guard” is a variation of RAII

• Foo* createAndInit() {
 Foo* f = new Foo;
 auto_ptr<Foo> p(f);
 init(f); // may throw
 // exception
 p.release();
 return f;
}

• int run () {
 try {
 Foo *d = createAndInit();
 return 0;
 } catch (...) {
 return 1;
 }
}

Use auto_ptr to guarantee
that an exception does not
leak the resource.

When we are safe, we release
the auto_ptr and return the
pointer.

venerdì 18 maggio 12

unique_ptr

venerdì 18 maggio 12

unique_ptr

• Introduced in C++11

• Solves the problem of transfer of ownership
that are present in the (deprecated)
auto_ptr

• copy constructor and assignment operator
are declared as private

• Can be used in STL containers and algorithms

venerdì 18 maggio 12

unique_ptr vs. auto_ptr
• Consider unique_ptr an improved version of auto_ptr. It has an almost identical interface:

• #include <utility>
using namespace std;
unique_ptr<int> up1; //default construction
unique_ptr<int> up2(new int(9)); //initialize with pointer
*up2 = 23; //dereference
up2.reset(); //reset

• The main difference between auto_ptr and unique_ptr is visible in move operations. While auto_ptr
sometimes disguises move operations as copy-operations, unique_ptr will not let you use copy semantics
when you're actually moving an lvalue unique_ptr:

• auto_ptr<int> ap1(new int);
auto_ptr<int> ap2=ap1; // OK but unsafe: move
 // operation in disguise
unique_ptr<int> up1(new int);
unique_ptr<int> up2=up1; // compilation error: private
 // copy ctor inaccessible

Instead, you must call move() when moving operation from an lvalue:
unique_ptr<int> up2 = std::move(up1);//OK

venerdì 18 maggio 12

Boost smart pointers

venerdì 18 maggio 12

Boost smart pointers

• The Boost libraries provide a set of alternative
smart pointers

• many have been selected for introduction in
C++11... use the Boost library if your
compiler still does not support those
pointers

• designed to complement auto_ptr

venerdì 18 maggio 12

Boost smart pointers
• Four of the Boost smart pointers:

• scoped_ptr defined in <boost/scoped_ptr.hpp>
Simple sole ownership of single objects. Noncopyable.

• scoped_array defined in <boost/scoped_array.hpp>
Simple sole ownership of arrays. Noncopyable.

• shared_ptr defined in <boost/shared_ptr.hpp>
Object ownership shared among multiple pointers. std::shared_ptr represents reference
counted ownership of a pointer. Each copy of the same shared_ptr owns the same
pointer. That pointer will only be freed if all instances of the shared_ptr in the program
are destroyed.

• weak_ptr defined in <boost/weak_ptr.hpp>
Non-owning observers of an object owned by shared_ptr. It is designed for use with
shared_ptr.

venerdì 18 maggio 12

http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/scoped_ptr.htm
http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/scoped_ptr.htm
http://www.boost.org/doc/libs/1_49_0/boost/scoped_ptr.hpp
http://www.boost.org/doc/libs/1_49_0/boost/scoped_ptr.hpp
http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/scoped_array.htm
http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/scoped_array.htm
http://www.boost.org/doc/libs/1_49_0/boost/scoped_array.hpp
http://www.boost.org/doc/libs/1_49_0/boost/scoped_array.hpp
http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/shared_ptr.htm
http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/shared_ptr.htm
http://www.boost.org/doc/libs/1_49_0/boost/shared_ptr.hpp
http://www.boost.org/doc/libs/1_49_0/boost/shared_ptr.hpp

Boost smart pointers
• Four of the Boost smart pointers:

• scoped_ptr defined in <boost/scoped_ptr.hpp>
Simple sole ownership of single objects. Noncopyable.

• scoped_array defined in <boost/scoped_array.hpp>
Simple sole ownership of arrays. Noncopyable.

• shared_ptr defined in <boost/shared_ptr.hpp>
Object ownership shared among multiple pointers. std::shared_ptr represents reference
counted ownership of a pointer. Each copy of the same shared_ptr owns the same
pointer. That pointer will only be freed if all instances of the shared_ptr in the program
are destroyed.

• weak_ptr defined in <boost/weak_ptr.hpp>
Non-owning observers of an object owned by shared_ptr. It is designed for use with
shared_ptr.

Similar to unique_ptr
(but no transfer of

ownership)

venerdì 18 maggio 12

http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/scoped_ptr.htm
http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/scoped_ptr.htm
http://www.boost.org/doc/libs/1_49_0/boost/scoped_ptr.hpp
http://www.boost.org/doc/libs/1_49_0/boost/scoped_ptr.hpp
http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/scoped_array.htm
http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/scoped_array.htm
http://www.boost.org/doc/libs/1_49_0/boost/scoped_array.hpp
http://www.boost.org/doc/libs/1_49_0/boost/scoped_array.hpp
http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/shared_ptr.htm
http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/shared_ptr.htm
http://www.boost.org/doc/libs/1_49_0/boost/shared_ptr.hpp
http://www.boost.org/doc/libs/1_49_0/boost/shared_ptr.hpp

Boost smart pointers
• Four of the Boost smart pointers:

• scoped_ptr defined in <boost/scoped_ptr.hpp>
Simple sole ownership of single objects. Noncopyable.

• scoped_array defined in <boost/scoped_array.hpp>
Simple sole ownership of arrays. Noncopyable.

• shared_ptr defined in <boost/shared_ptr.hpp>
Object ownership shared among multiple pointers. std::shared_ptr represents reference
counted ownership of a pointer. Each copy of the same shared_ptr owns the same
pointer. That pointer will only be freed if all instances of the shared_ptr in the program
are destroyed.

• weak_ptr defined in <boost/weak_ptr.hpp>
Non-owning observers of an object owned by shared_ptr. It is designed for use with
shared_ptr.

Included in C++11

Similar to unique_ptr
(but no transfer of

ownership)

venerdì 18 maggio 12

http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/scoped_ptr.htm
http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/scoped_ptr.htm
http://www.boost.org/doc/libs/1_49_0/boost/scoped_ptr.hpp
http://www.boost.org/doc/libs/1_49_0/boost/scoped_ptr.hpp
http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/scoped_array.htm
http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/scoped_array.htm
http://www.boost.org/doc/libs/1_49_0/boost/scoped_array.hpp
http://www.boost.org/doc/libs/1_49_0/boost/scoped_array.hpp
http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/shared_ptr.htm
http://www.boost.org/doc/libs/1_49_0/libs/smart_ptr/shared_ptr.htm
http://www.boost.org/doc/libs/1_49_0/boost/shared_ptr.hpp
http://www.boost.org/doc/libs/1_49_0/boost/shared_ptr.hpp

Credits

• These slides are (heavily) based on the material of:

• Scott Meyers, “Effective C++, 3rd ed.”

• Wikipedia

• Herb Sutter, “Exceptional C++”

venerdì 18 maggio 12

